On Riesz Bases of Exponentials for Convex Polytopes with Symmetric Faces
نویسندگان
چکیده
We prove that for any convex polytope $\Omega \subset \mathbb{R}^d$ which is centrally symmetric and whose faces of all dimensions are also symmetric, there exists a Riesz basis exponential functions in the space $L^2(\Omega)$. The result new $d$ greater than one.
منابع مشابه
Centrally symmetric polytopes with many faces
We present explicit constructions of centrally symmetric polytopes with many faces: (1) we construct a d-dimensional centrally symmetric polytope P with about 3d/4 ≈ (1.316)d vertices such that every pair of non-antipodal vertices of P spans an edge of P , (2) for an integer k ≥ 2, we construct a d-dimensional centrally symmetric polytope P of an arbitrarily high dimension d and with an arbitra...
متن کاملOn duality of modular G-Riesz bases and G-Riesz bases in Hilbert C*-modules
In this paper, we investigate duality of modular g-Riesz bases and g-Riesz bases in Hilbert C*-modules. First we give some characterization of g-Riesz bases in Hilbert C*-modules, by using properties of operator theory. Next, we characterize the duals of a given g-Riesz basis in Hilbert C*-module. In addition, we obtain sufficient and necessary condition for a dual of a g-Riesz basis to be agai...
متن کاملOn the number of faces of centrally-symmetric simplicial polytopes
I. Bfirfiny and L. Lovfisz [Acta Math. Acad. Sci. Hung. 40, 323-329 (1982)] showed that a d-dimensional centrally-symmetric simplicial polytope ~ has at least 2 d facets, and conjectured a lower bound for the number f~ of i-dimensional faces o f ~ in terms ofd and the number f0 = 2n of d vertices. Define integers ho . . . . . he by Z f~-1(x 1) d-' = ~ hi xd-'. A. Bj6rner conjectured (uni=O i=O ...
متن کاملAsymmetry of convex polytopes and vertex index of symmetric convex
In [GL] it was shown that a polytope with few vertices is far from being symmetric in the Banach-Mazur distance. More precisely, it was shown that Banach-Mazur distance between such a polytope and any symmetric convex body is large. In this note we introduce a new, averaging-type parameter to measure the asymmetry of polytopes. It turns out that, surprisingly, this new parameter is still very l...
متن کاملOn the metric dimension of rotationally-symmetric convex polytopes∗
Metric dimension is a generalization of affine dimension to arbitrary metric spaces (provided a resolving set exists). Let F be a family of connected graphs Gn : F = (Gn)n ≥ 1 depending on n as follows: the order |V (G)| = φ(n) and lim n→∞ φ(n) = ∞. If there exists a constant C > 0 such that dim(Gn) ≤ C for every n ≥ 1 then we shall say that F has bounded metric dimension, otherwise F has unbou...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Trends in mathematics
سال: 2021
ISSN: ['2297-024X', '2297-0215']
DOI: https://doi.org/10.1007/978-3-030-74417-5_11